

Evaluating Stacked Processing to Improve Wooden Breast Functionality and Tenderness J. Williams¹, M.J. Nawaz^{1*}, H. Thippareddi², S.R. Brannen¹, S.A. DeVane¹, and A.M. Stelzleni¹

Introduction

- Improvements have been made enhancing broiler growth performance to fulfill the increasing demand for chicken meat
- Data from the last decade have linked increased growth rate to an increase in myopathies impacting breast quality
- One myopathy, thoroughly defined as wooden breast (WB), has become prevalent and is characterized by: White striping Lipidosis Rigidity Lesions Fibrosis Fiber degeneration
- Though prevalent, the incidence has varied in the literature:
 - WB 5-10%, Poultry World 2018
 - WB 10-40%, Poultry Producer 2020
- WB 10-20% Brazil
- WB 42% Italy
- Wooden breast meat is often discarded or greatly devalued due to quality defects, costing the poultry industry over an estimated \$200 mil/year
- Little focus on stacked or multiple processing applications to improve WB functionality and tenderness
- Alnahhas et al. 2016, Lorenzi et al. 2014, Russo et al. 2015, Petracci et al. 2019

Objective:

• Determine if stacked processing of wooden breast fillets with blade tenderization improves marinade retention, tenderness, and textural properties

Methods

Sample Collection & Treatments: (Flow Chart 1)

- Across 3 replications, broiler breast (N = 495) were collected ~ 4 hours postmortem from a commercial poultry facility
- Breast fillets were sorted into 3 WB severity categories via manual palpation and compression: Normal (NOR; n = 165) Moderate (MOD; n = 165) Severe (SEV; n = 165)
- 90 breasts from each WB category were randomly sorted into four processing treatments:
- . Control (CON)
- **2.** Blade Tenderization (**BT**)
- **3.** BT, Vacuum Marination (**BTM** 10% pickup: 0.75% NaCl, 0.3% STP)
- **4.** BT, Injection Enhancement, Vacuum Marination (**BTIM** 10% pickup: 0.75% NaCl, 0.3% STP)

Texture Analysis:

- Breast (n = 15) for each severity*processing treatment were analyzed for:
- White striping & lesions Cook loss
- Raw color
- Marinade pickup
- Processed color
- Cooked color
- TPA
- Multiblade analysis

Proximate & NMR:

- content
- Magnetic Resonance (NMR)

University of Georgia, ¹Animal and Dairy Science, ²Poultry Science

- 50% WS Italy, France, Spain, Brazil
- Day to day variation of 0-50%

• Single further process techniques of blade tenderization, tumble marination, multi-needle enhancement have yielded small to moderate improvements

TAP HERE TO RETURN TO KIOSK MENU

Abstract # 71

Results **Descriptive Characteristics:**

- NOR breast was lower than MOD or SEV for: initial weight, WB score, Lesion score, Compression, pH, L*, Moisture, Fat, and Insoluble collagen ($P \le 0.02$)
- There was no severity by processing treatment interaction or processing main effect for Initial Weight, WB Score, Lesion Score, Compression (P > 0.24) (<u>Table 1</u>)

Post Processing Characteristics:

- Total marinade % Pickup had a severity by processing interaction (P < 0.01)
- % Pickup for SEV BTM/BTIM was less than NOR BTM/BTIM & MOD BTIM (P < 0.01); MOD BTIM was similar to NOR BTM/BTIM (P > 0.05) (Figure 1)
- WB severity impacted injection pickup with NOR > MOD > SEV (P < 0.01)
- MOD & SEV had greater Overnight purge loss than NOR (P < 0.01) (Table 2)

Post Cooking Characteristics:

- % Cook loss had a severity by processing interaction (P < 0.01) (Figure 2)
- Bound water was greater for NOR & MOD than SEV (P < 0.01)
- NOR had greater proportions of intramyofibrillar and lower proportions of extramyofibrillar than MOD & SEV (P < 0.01)
- Processing did not impact water proportions (P > 0.23) (<u>Table 3</u>)

Texture Characteristics:

- There was no severity by processing interaction for objective tenderness or texture (P > 0.01)
- NOR required less shear force and total energy than MOD or SEV (P < 0.01)
- NOR and MOD were similar (P >0.05) and less than (P < 0.01) SEV for Hardness, Adhesion, Resiliency, Cohesion, Springiness, and Chewiness
- BTIM shear force was less than BTM, BT, and CON (P < 0.02)
- BTM/BTIM were softer than CON or BT (P < 0.05) (<u>Table 4</u>)

Conclusion

blade tenderized samples.

Meat Science and Technology Center College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

American Meat Science Association

Evaluating Stacked Processing to Improve Wooden Breast Functionality and Tenderness J. Williams¹, M.J. Nawaz^{1*}, H. Thippareddi², S.R. Brannen¹, S.A. DeVane¹, and A.M. Stelzleni¹

Flow Chart 1

University of Georgia, ¹Animal and Dairy Science, ²Poultry Science

TAP HERE TO RETURN TO KIOSK MENU

Abstract # 71

American Meat Science Association

Evaluating Stacked Processing to Improve Wooden Breast Functionality and Tenderness J. Williams¹, M.J. Nawaz^{1*}, H. Thippareddi², S.R. Brannen¹, S.A. DeVane¹, and A.M. Stelzleni¹

Table 1. Least Squares	Means for th	e main effec	ct descriptiv	ve statistics	s for NOR, I	MOD, and	Table	2. Least Squares	Means for the	e main effect	processing	characteris	tics for No	OR, 1
SEV wooden breast samples prior to stacked processing including CON, BT, BTM, and BTIM Wooden Breast Severity						SEV wo	SEV wooden breast samples after stacked processing including CON, BT, BTM, and B Wooden Breast Severity							
Item		MOD	severity SI	FV	SEM	P_value	Itom			MOD	Severity		SEN	
Descriptive	ΠΟΙ	INIOD			SL IVI				205 50C	100 100 72	$\frac{SL}{522}$	$\frac{2}{20a}$		
Initial Wt a	386 79 ^c	492 50	b 537	/ 02 ^a	0 00	<0.0001	Initial P	rocessing wi, g	385.52	488./3°	533	.20"	10.31	
Wooden Breast Score	1 03°	1 2.50	, 557 1 '	.02 73 ^a	0.06	<0.0001	Post Pro	cessing wt, g	400.62°	505.13°	ý 546	.32 ^a	11.15	
Hemorrhagic Score	1.00 ^b	1.20 1.17 ^b	1.	63 ^a	0.00	<0.0001	Injection	n Pickup, %	$6./6^{a}$	5.80°	4.9	96°	0.23	
Compression N	1.00 21 49 ^c	33 37 ^b	² 50	05 ^a	2.18	<0.0001	Total P1	ckup, %	4.14^{a}	3.310	2.4	17 ^C	0.44	
nH	574^{b}	5 92ª	50.	.0 <i>5</i>	0.06	<0.0001	Purge L	$OSS^1, \%$	0.32	0.76 ^a	0.7	71 ^a	0.13	
$Color^1$	J./+	5.92	0.0	00	0.00	<0.0001			Processing Treatment					
	65 63°	68 64 ^t	^o 69	70 ^a	0 29	<0.0001			CON	BT	BTM	BTIM	SEM	1
L 2*	9 89 ^c	10.61 ^b	$^{\circ}$ 11	16 ^a	0.27	<0.0001	Initial P	rocessing Wt, g	467.77	477.62	467.36	463.85	11.23	3
a h*	15 22 ^b	10.01 17 12 ^a	11.	82 ^a	0.11	<0.0001	Post Pro	cessing Wt, g	467.78	477.82	494.02	496.47	12.0	7
Proximate analysis	10.22	1 / • 1 2	170	.02	0.20	0.0001	Total Pi	ckup, %	0.00^{c}	0.00^{c}	5.97 ^b	7.25 ^a	0.46)
Moisture. %	75.48°	76.42^{t}	o 77	37 ^a	0.23	< 0.0001	Purge L	oss^1 , $\frac{1}{2}$	0.45	0.65	0.63	0.66	0.14	ł
Protein. %	22.03^{a}	20.83^{b}	^o 19	.87 ^c	0.21	< 0.0001	^{abc} Mean	s within a row wi	th differing s	unerscripts ar	e different	P < 0.05		
Fat. %	1.26 ^b	1.58 ^{ab}) 1.0	67 ^a	0.14	0.0229	¹ Purge 1	oss percentage is	the amount o	f moisture los	s occurring	during an	8-hr rest 1	hetw
Ash. %	1.23 ^a	1.17 ^{ab}) 1.0	09 ^b	0.02	0.0008	processi	ng treatment annl	ication and c	ooking		, aannig an		
Collagen ⁵							Processi	ing treatment appr		ooming.				
Insoluble, mg/g	5.55 ^b	6.30 ^b	7.3	87 ^a	0.34	< 0.0001	Fi	gure 1						
Soluble, mg/g	2.57	2.79	3.	04	0.18	0.2108	12							
	Processing Treatment						10		a					
	CON	BT	BTM	BTIM	SEM	<i>P</i> -value	$>^{10}$	ما			- h			
Descriptive							a. 8							
Initial Wt, g	470.06	480.82	470.44	467.08	10.95	0.7198	i ku							
Wooden Breast Score	1.24	1.42	1.42	1.31	0.07	0.2407	Pic 0							C
Hemorrhagic Score	1.24	1.29	1.27	1.27	0.10	0.9810	ित 4							
Compression, N	34.50	37.15	35.33	32.90	2.38	0.4562								
$Color^1$								d d		d d			d d	
L*	68.42	68.03	67.75	67.76	0.34	0.4369				T				
a*	10.40^{ab}	10.85 ^a	10.69 ^{ab}	10.27 ^b	0.17	0.0455	U	ΝΛΡ					CL	7 \ /
b*	16.86	17.21	16.70	16.11	0.30	0.0731				Woodon R	roget Sovari	f x 7	51	⊿ ♥
^{abc} Means within a row wi	th differing	superscripts	are differen	nt. $P < 0.0^4$	5.							L Y		

when a row with antering superscripts are unreferred, r = 0.05.

University of Georgia, ¹Animal and Dairy Science, ²Poultry Science

TAP HERE TO RETURN TO KIOSK MENU

Abstract # 71

MOD, and TIM)

veen

American Meat Science Association

Evaluating Stacked Processing to Improve Wooden Breast Functionality and Tenderness J. Williams¹, M.J. Nawaz^{1*}, H. Thippareddi², S.R. Brannen¹, S.A. DeVane¹, and A.M. Stelzleni¹

Table 3. Least Squares Means for the main effect cooking characteristics for NOR, MOD, and

SEV wooden breast samp	oles after stack	ked processing	g including	, CON, BT,	BTM, and E	BTIM			
Wooden Breast Severity									
Item	NOR	MOD	SEV		SEM	<i>P</i> -value			
Pre-cook Wt, g	399.41° 503.13 ^b		541	541.55 ^a		< 0.0001			
Post-cook Wt, g	332.91 ^b 408.33 ^a		416	416.94 ^a		< 0.0001			
Cook Time, min	42.82 ^b	54.21 ^a	54	54.00 ^a		< 0.0001			
Cook Loss, %	16.56 ^c	19.06 ^b	23	.05ª	0.49	< 0.0001			
NMR Water ¹									
P2B, %	0.49^{a} 0.45^{a}		0.37^{b}		0.03	< 0.0001			
P21, %	63.72 ^a	60.94 ^b	59	.79 ^b	1.84	0.0029			
P22, %	35.78 ^b	38.58 ^a	39.84 ^a		1.81	0.0022			
	Processing Treatment								
	CON	BT	BTM	BTIM	SEM	<i>P</i> -value			
Pre-cook Wt, g	465.68	472.63	492.58	494.57	12.23	0.0639			
Post-cook Wt, g	358.57 ^b	359.11 ^b	403.56 ^a	423.00 ^a	10.26	< 0.0001			
Cook Time, min	51.98	50.46	50.53	48.41	1.89	0.1772			
Cook Loss, %	22.54 ^a	23.56 ^a	17.84 ^b	14.28°	0.57	< 0.0001			
NMR Water ¹									
P2B, %	0.41	0.44	0.45	0.46	0.03	0.2332			
P21, %	60.55	61.72	62.45	61.22	1.86	0.5413			
P22, %	39.01	37.84	37.09	38.32	1.84	0.5383			

^{abc}Means within a row with differing superscripts are different, P < 0.05. ¹Nuclear Magnetic Resonance P2B – bound, P21 – intra-myofibrillar, P22 – extra-myofibrillar.

University of Georgia, ¹Animal and Dairy Science, ²Poultry Science

Table 4. Least Squares Means for the main effect of objective tenderness and texture for NOR, MOD, and SEV wooden breast samples after stacked processing including CON, BT, BTM, and BTIM

Item

Objective Tenderness Multiblade Shear, N Total Energy, N.mm *Objective Texture* Hardness, N Adhesion, N.sec Resiliency, % Cohesion Springiness, % Chewiness

Objective Tenderness Multiblade Shear, N Total Energy, N.mm *Objective Texture* Hardness, N Adhesion, N.sec Resiliency, % Cohesion Springiness, % Chewiness

TAP HERE TO RETURN TO KIOSK MENU

Abstract # 71

Wo	oden Breast	Severity			
NOR	MOD	S]	EV	SEM]
33.53°	42.97 ^b	57	.64 ^a	2.58	<
170.04 ^c	246.16 ^b	312	2.92 ^a	22.13	<
1	1				
19.83 ^b	18.30 ^b	22.	.32 ^a	1.28	<
-0.06 ^b	-0.04 ^b	0.	00 ^a	0.01	<
35.81 ^b	36.91 ^b	42	.05 ^a	1.01	<
0.69 ^b	0.70^{b}	0.	74 ^a	0.01	<
84.78^{b}	84.35 ^b	89	.30 ^a	1.02	<
11.71 ^b	10.66 ^b	14	.69 ^a	1.15	<
	Processing T	reatment			
CON	BT	BTM	BTIM	SEM	
45.38^{a}	48.29 ^a	44.08^{a}	41.11 ^b	2.71	
235.65	256.57	250.23	229.71	22.73	
71 01ab	71 25 a	18 00b	10 25b	1 2 2	
21.01^{-10}	21.55^{-1}	10.99°	19.23°	1.55	
-0.02	-0.04	-0.03	-0.04	0.01	
38.58 ^a	35.49	38.61 ^a	40.36^{a}	1.05	
0.72^{ab}	0.69 ^b	0.70b	0.73 ^a	0.01	
85.57 ^a	83.51 ^b	87.56 ^a	87.94 ^a	1.12	
12.98	12.38	11.71	12.34	1.18	

^{abc}Means within a row with differing superscripts are different, P < 0.05.

P-value

P-value

0.0195 0.2519

0.0448 0.6187 < 0.0001 0.0006 0.0048 0.3855