Citrus Fiber Alters Dynamic Rheology, Texture, and Water Holding Capacity of Chicken Wooden Breast Breakfast Sausage Batter M. J. Nawaz^{1*}, H. Thippareddi², B. Bowker⁴, W. Kerr³, D. H. Thomas¹, J. A. Scott¹, C. Lee¹, and A.M. Stelzleni¹ University of Georgia, ¹Animal and Dairy Science, ²Poultry Science, ³Food Science ⁴USDA, Agriculture Research Service, U.S. National Poultry Research Center Abstract # 43

Meat Science and **Technology Center** College of Agricultural & Environmental Sciences **UNIVERSITY OF GEORGIA**

Introduction

- Wooden breast (WB) is characterized by altered protein structure and function resulting in hardness and diminished water-holding capacity (WHC)
- Wooden breast posts significant revenue loss due to frequent rejections or undervaluation
- Integrating WB in further processed products can add value, However, WB integration results in mushy and watery batter formation
- Citrus fiber (FIB) was reported to reduce water losses and ameliorate rheological and texture properties of meat batters

Objective:

• To evaluate citrus fibers' influence on rheological, textural and water holding properties of WB meat batter to improve processability

Methods

- Across 3 reps 227 kg Normal and Severe WB fillets were collected (Flow Chart 1)
- Ground:
 - Coarse = 1.27 cm
 - Fine = 0.48 cm
- Treatments:
 - [0% WB (**NF-WB0**)]
 - [50%WB (NF-WB50)]
 - [100%WB (NF-WB100)]
- Spice mix:
 - Breakfast sausage blend, Water = 3%, Citrus fiber = $\pm 1\%$
- Vacuum stuffer breakfast patty extrusion:
 - Single-slot Colosimo die (3/8")
- Further analyses:
 - Dynamic Rheology Cook loss
 - TPA (raw batter)
- Data were analyzed as **RCBD**
 - 2×3 factorial arrangement
 - Fixed effects = Fiber inclusion & WB %
 - Random term = Replication

- Fiber × [0% WB (**FIB-WB0**)]
- Fiber × [50%WB (**FIB-WB50**)]
- Fiber × [100%WB (**FIB-WB100**)]

Results Cook Loss:

Dynamic Rheology:

- level
- Fiber-added

Fiber inclusion improved (P < 0.05) cook yield by 1.92% irrespective of the WB percentage, whereas WB50 had 1.77% and WB100 had 3.45% greater (P < 0.01) cook loss than WB0, irrespective of the fiber inclusion (Figure 1)

• There were WB×FIB interactions (P < 0.01) for the damping factor (tan δ), NF-WB0 had a smaller (P < 0.01) tan δ than NF-WB100, and F-WB0 had a smaller (P < 0.05) tan δ than F-WB100, indicating their stronger internal structure and more elastic (solid-like) behavior • The Fiber incorporation made breakfast sausage batters less elastic (P < 0.01; Figure 2) • There were no WB×FIB interactions (P > 0.05) for the complex modulus (G*), storage modulus (G'), and loss modulus (G")

• Irrespective of fiber inclusion, WB100 had the smallest (P < 0.01) G* value, followed by WB50 and WB0, explaining the decreased total resistance to deformation with increased WB

breakfast sausage batters demonstrated enhanced (P < 0.01) total deformation (greater G*), resistance to irrespective of the WB level

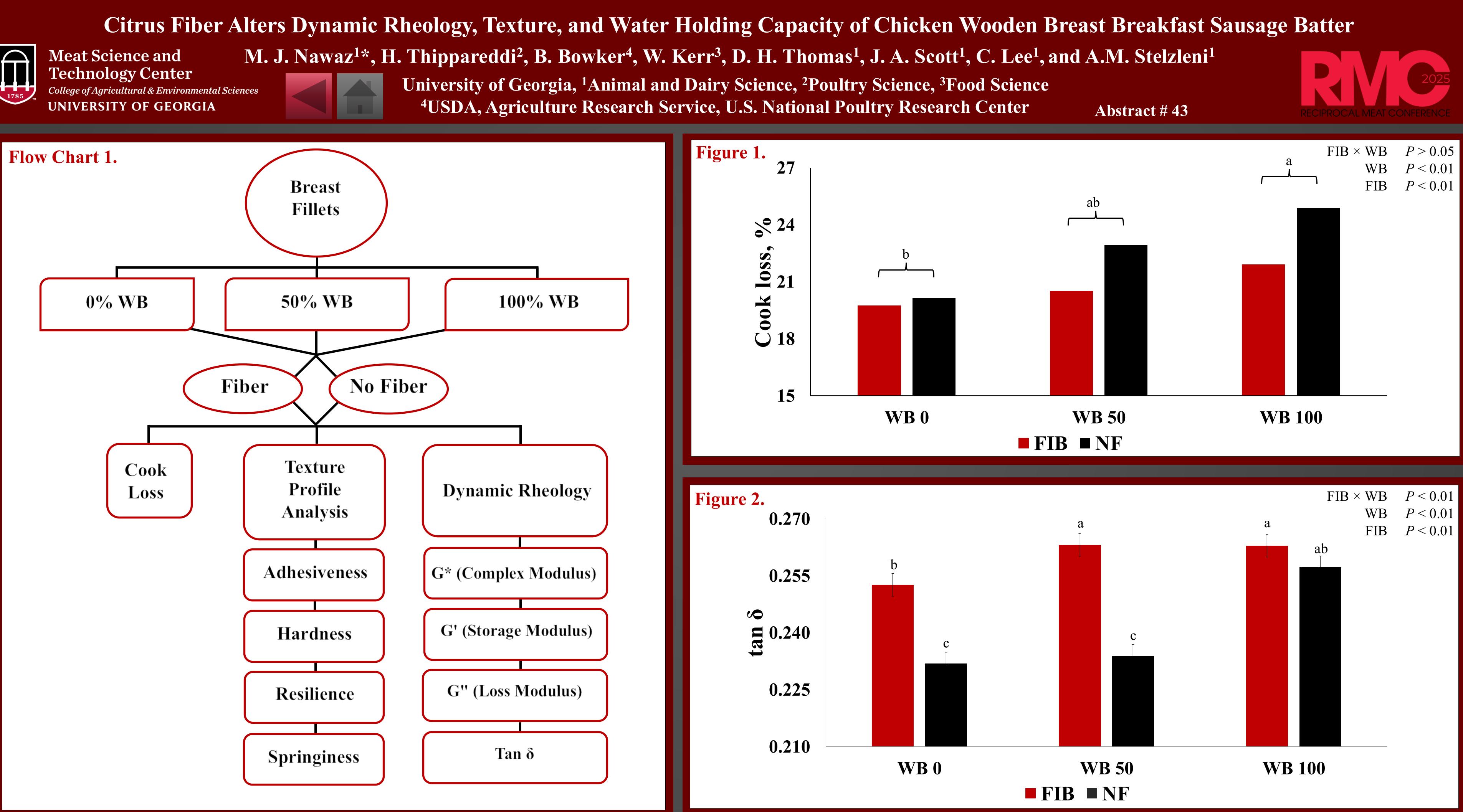
- Increased WB percentage in breakfast sausage batters resulted in decreased (P < 0.01) G', illustrating weaker and softer batter, while fiber addition increased G' of batters
- Reduced G" values were shown by increased WB content in batters, depicting decreased spreadability; fiber addition increased G" irrespective of WB level (Figure 3)

Texture Profile Analysis:

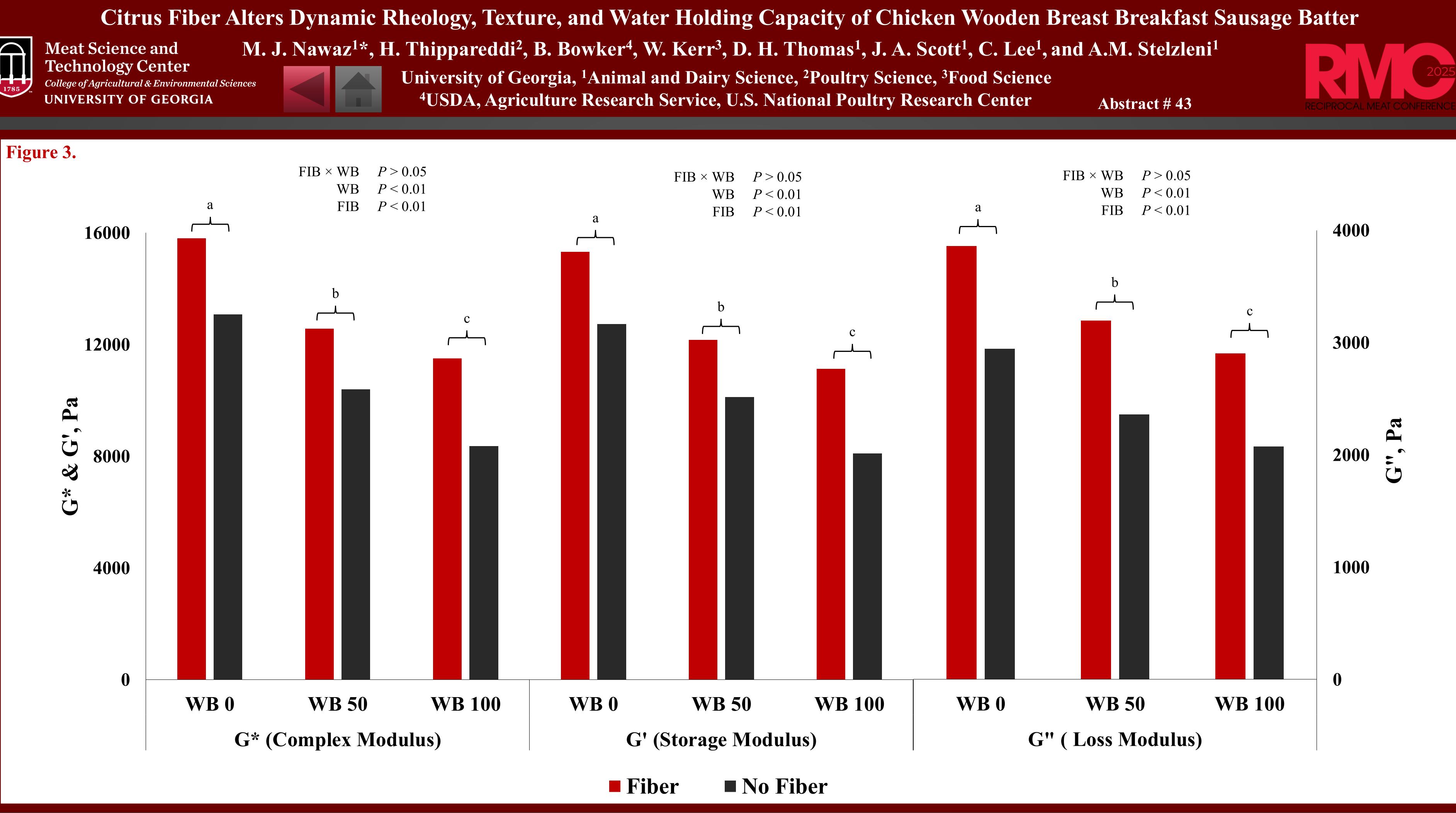
- Raw breakfast sausage batters had WB×FIB interactions (P < 0.01) for adhesiveness but not (P > 0.05) for hardness, resilience, springiness, and gumminess
- The adhesiveness exhibited by F-WB50 was not different (P < 0.01) from NF (<u>Table 1</u>)

Conclusion

Overall, fiber addition to breakfast sausage formulations made with wooden breast meat resulted in a meat batter with increased resistance to deformation (greater G*), increased firmness (greater G') and decreased elastic behavior (greater tan δ). As a result of these changes to the batter, breakfast sausages that included citrus fiber in the formulation were more adhesive and springier, less resilient and had an improved cooking yield.


Acknowledgments USDA

Technology Center



P < 0.01 *P* < 0.01 *P* < 0.01

Technology Center College of Agricultural & Environmental Sciences **UNIVERSITY OF GEORGIA**

Citrus Fiber Alters Dynamic Rheology, Texture, and Water Holding Capacity of Chicken Wooden Breast Breakfast Sausage Batter M. J. Nawaz¹*, H. Thippareddi², B. Bowker⁴, W. Kerr³, D. H. Thomas¹, J. A. Scott¹, C. Lee¹, and A.M. Stelzleni¹ University of Georgia, ¹Animal and Dairy Science, ²Poultry Science, ³Food Science ⁴USDA, Agriculture Research Service, U.S. National Poultry Research Center Abstract # 43

Meat Science and **Technology Center** College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

(WB) percentages (0, 50, 100), and with (FIB) or without (NF) citrus fiber

Trait	FIB			NF				P value		
	WB 0	WB 50	WB 100	WB 0	WB 50	WB 100	SEM	FIB	WB	$FIB \times WB$
Texture										
Adhesiveness, g.sec	-426.19 ^a	-338.40 ^b	-274.84 ^c	-330.11 ^b	-336.50 ^b	-250.04 ^c	15.79	< 0.01	< 0.01	< 0.01
Hardness, g	801.75	520.99	349.71	767.00	504.77	310.26	32.73	0.07	< 0.01	0.83
Resilience, %	8.17	6.66	5.85	8.85	7.26	6.43	0.21	< 0.01	< 0.01	0.92
Gumminess	41369.0	27548.0	19905.0	38024.0	28080.0	18586.0	1682.7	0.06	< 0.01	0.11
Springiness, %	95.20	95.36	95.42	94.06	94.33	94.19	0.19	< 0.01	0.24	0.69

^{abc}Means in the same row with different superscripts differ (FIB \times WB).

Table 1. Texture Profile Analysis least square mean values of raw chicken breakfast sausage batter with different severe wooden breast

